RAISEBORE DESIGN AND BACK ANALYSIS THE MGT WAY EAGCG WORKSHOP 2 MARCH 2023 JOHN PLAYER AND PETER EVANS

MCCRACKEN AND STACEY

- Contractors and Engineers are used to the results
- Q-system based rock mass classification from a geotechnical investigation hole or generalized from rockmass logging
 - Worse and typical conditions per domain
- Generalised kinematic setting using other data sources due to challenges in core orientation in vertical holes
- Smoothing an important part of the input
- Material Properties
 - UCS testing
 - Contractor testing RBi
- "Stable" is not no overbreak, but a stable final shape
- Output
 - stable dimensions
 - Empirical comparisons

From	То	Discont inuity Type	Weathering	Wall - Qr Typical 3m Ave	Wall - Qr Worse 3m Ave	Face - Qr Typical 3m Ave	Face - Qr Worse 3m Ave	Wall - Max Span Typical 3m Ave	Wall - Max Span Worse 3m Ave	Face - Max Span Typical 3m Ave	Face - Max Span Worse 3m Ave
0	14	SAP	MW	3.7	3.7	3.7	1.3	4.4	4.4	2.9	2.9
1.4	3	SAP	MW	2.0	2.0	2.0	0.8	3.4	3.4	2.4	- 2.4
3	4.5	SAP	MW	0.5	0.5	0.5	0.4	1.9	1.9	1.9	1.9
4.5	6.4	SAP	MW	1.0	1.0	1.0	0.6	2.6	2.6	2.1	. 2.1
6.4	8.4	SAP	MW	2.5	2.5	2.5	0.9	3.7	3.7	2.5	2.5
8.4	10.2	JOI	SW	3.5	3.5	3.5	1.3	4.3	4.3	2.9	2.9
10.2	11.2	JOI	SW	2.0	2.0	2.0	1.0	3.5	3.5	2.6	i 2.6
11.2	12.5	JOI	SW	4.1	1.0	4.1	0.6	4.6	2.6	3.2	. 2.1
12.5	13.8	JOI	SW	5.9	1.1	5.9	0.6	5.3	2.7	3.6	2.1
13.8	15.5	JOI	SW	4.2	1.7	4.2	0.8	4.6	3.2	. 3.2	. 2.3
15.5	17.4	101	SW	3.6	3.6	3.6	1.3	4.3	4.3	2.9	2.9
17.4	19	JOI	SW	3.7	3.7	3.7	1.3	4,4	. 4,4	2.9	2.9
19	20.8	JOI	SW	6.1	6.1	6.1	2.1	5.4	5.4	3.5	3.5
20.8	21.35	JOI	SW	4.6	4.6	4.6	1.7	4.8	4.8	3.3	3.1
21.35	22.4	JOI	SW	7.1	7.0	7.1	2.6	5.7	5.7	3.8	3.8
22.4	24	JOI	SW	12.9	12.8	12.9	4.6	7.2	7.2	4.8	4.8
24	25	JOI	FR	21.7	21.7	21.7	7.7	8.9	8.9	5.9	5.9
25	26.6	JOI	FR	22.9	22.9	22.9	8.1	9.1	9.1	6.0	6.0
26.6	28	JOI	FR	14.1	14.1	14.1	5.0	7.5	7.5	4.9	4.9
28	28.9	JOI	FR	14.5	14.5	14.5	5.1	7.6	7.6	5.0	5.0
28.9	30	JOI	FR	17.4	17.4	17.4	6.2	8.2	8.2	5.4	5.4
30	32	JOI	FR	21.8	21.2	21.8	7.5	8.9	8.8	5.9	5.8
32	34	JOI	FR	15.6	13.2	15.6	4.7	7.8	7.3	5.1	4.8
34	36	JOI	FR	15.4	14.8	15.4	5.2	7.8	7.6	5.1	. 5.0
36	38	JOI	FR	25.0	25.0	25.0	8.8	9.4	9.4	6.2	6.2
38	40	JOI	FR	28.5	28.5	28.5	10.1	9.9	9.9	6.5	6.5
40	42	JOI	FR	34.6	34.6	34.6	12.2	10.7	10.7	7.1	7.1
42	44	JOI	FR	56.3	56.3	56.3	19.9	13.0	13.0	8.6	8.6
44	46	JOI	FR	61.6	61.6	61.6	21.7	13.5	13.5	8.9	8.9
46	48	JOI	FR	55.2	55.2	55.2	19.5	12.9	12.9	8.5	8.5
48	50	JOI	FR	35.6	35.6	35.6	12.6	10.9	10.9	7.2	7.2
50	52	JOI	FR	53.7	51.1	53.7	18.0	12.8	12.5	8.4	8.3
52	54	JOI	FR	37.5	27.2	37.5	9.6	11.1	. 9.7	7.3	6.4
54	56	101	FR	39.4	36.8	39.4	13.0	11.3	11.0	7.4	7.2
56	58	101	FR	199.2	89.8	199.2	31.7	21.6	15.7	14.2	10.4
58	60	101	FR	618.9	181.3	618.9	64.0	34.0	20.8	22.4	13.7
60	62	101	FR	251.1	141.7	251.1	50.0	23.7	18.9	15.6	12.4

RAISEBORE DESIGN AND BACK ANALYSIS, THE MGT WAY

- Design
 - Empirical (M&S) or
 - Appropriate Failure criterion with discrete structures in 3D inelastic models
- Monitor
 - Water loss
 - Seismicity generated
 - Rig data (often hard to get due to contractor protection)
 - Oversize reporting to bottom of the raise
- Verify
 - Video
 - Lidar scan for "as built"
 - Water ingress on structure, stress breakout, blocky fall out

DESIGN

- What is the geological, hydrogeological and mine setting / purpose of the raise
- What are the infrastructure / collar requirements of the raise?
- Geotechnical investigation hole along axis of raise
 - ATV-OTV down the drill hole
 - Discrete structural orientations from ATV-OTV \bullet
 - Properties from logging \bullet
 - Geotechnical logging of core establishing domains \bullet
 - Consolidated drained triaxial testing in "soils"
 - Hoek Cell single stage triaxial and BDT testing in \bullet rock (trans and fresh)
 - Appropriate Failure Criterion in 3D inelastic models

- Mohr-Coulomb for "soils"
 - Consolidated drained testing for material properties
 - Use variance as applicable •
 - Establish water table
 - Socket Design for excavation (Stress reduction \bullet factor approach) when weak saprolite not stable to raisebore
 - Mass concrete pour

- Mohr-Coulomb for "soils"
 - Pile design connection from mass concrete into transitional
 - Spacing related to structural spacing from ATV
 - Every second hole drilled and then installed, grouted, then repeat
 - Temporary prior to shotcrete spray

- Transitional rock mass
 - Structure from ATV-OTV
 - Cannot generate mesh in the model
 - Take a rock mass approach with GSI from logging \bullet (Hoek et al 2013)
- Unstable in model from element yield and volumetric strain
- Breakout modelled without piles
- Face stability also tested by staging the model and establishes a zone for not lowering the head

- Fresh rock
 - Discrete structures built within the model allows testing for kinematically unstable blocks
 - Compare the investigation hole with other data sources
 - enter the raise for walls and face
 - \bullet
 - Remaining raise is tested for yielded elements

- Fresh rock
 - Review intact failure modes on triaxial samples and establish variance or upper and lower bounds
 - Establish stress settings to test the model over
 - Raise is tested for yielded elements considering structures properties and factor of safety (then consider volumetric or shear strain as required and appropriate (massive – anisotropic rockmass)
 - In this case no damage is forecasted in the fresh rock -208mRL

MONITOR

MONITORING

- Drillers records
 - Shift advance
 - Rig details
 - Drillers ground conditions
- Seismic activity when reaming
- Water loss when drilling (how much grout is added to control water loss)
 - investigation hole
 - Pilot hole
- Water ingress
 - investigation hole, piloting, reaming

Water loss on fault

MONITORING – DRILLERS PLOD

DAILY DRILLING SUMMARY

RIG No. RBOT

HOLE DE	SCRI	PTI	ON:					Ler	ngth! 4	5.23	(SM	Ca	(9)		.Diameter	4.5M		
OPERATORS: D/S			N/S											•	RB 74390			
			Drilling Time Pilot Reaming Manhours No. of Men Rod RUC Delays							lays Mar	chine	Mine Delay	Rig Up	Rig Down	I	Rig Information		
					riaranoo	, arange			Thursday		001	TYIC .					Min	Max
DAY SHIFT 8.10				2.59M	24	2	. 20	1.0	0 -3	50	2.00			Pen Rate	39	45		
NIGHT SH	FT			6.10		3.02	8412	81	.20	- 5	0 . 7	30	4-10			Thrust	50	250
TOTAL				14.20		5.61	36	3	.40	1.5	0 1.0	00	6.10			Torque - MPa	50	140
PROGRESSIVE 397.00			108.82			77.50	298.9	60.	.40	332.10			Hour Meter	0.5	3			
																RPM		
Pre-starts	D	Ν				Day Sh	ift								N	ight Shift		
Rig	-		Serial N	lo.	Rod Len	igth	Serial N	0.	Rod	Length		Serial No. Rod Length		Serial No.		Rod Length		
Lv Kubota / IT	-		76-0	12	1.01							KUC-1313 1-52		-				
Area Inspect	-	-	- NOC-1	617	1. 20	-						RUC-1104 1.30						
	-											NUL	C- 010	14	15			
Floa	t Box	%																
DY	0.%	_	_															
N	0%										_			-				
	-	_						,										
TIME FROM	TIME TO		D/3	HUC DE		NIS			TIME FROM	TIME TO	D	15		MINE DEI	AY REASON			
			03:00-03:3	00-08:30=travel 1			:30-20:00 Travel check B/T :00-03:20 check B/T			SIT		06:30-07:30=Meeting 1			8:30-1900 . Meeting			
			17:30-18:00= travel 03:00-0									07:50-03:0		ONERE-ENTED 10		9:00-1930. Re	1:00-1920. Re-entries	
							Travel					13:00-18:30=E.O.S D			220 - 0630 - Wait on borner			
1										_	1000	1						-ggu
												1						
	- 1-	_	1	1.2.2.2	1000				-									
REMARKS:	DR	-	Continu	e Bac	k Reo	M			-									

SITE FOREMAN

MINE MANAGER

										Daily
			SITE:	Raise	bore P	ene <u>trat</u>	ion Ra ric:	te <u>22.07</u>		B
DATE: 16- C	01-20		SHIFT:)ay .			OPERATO	DR:		
ROD No	ROD Length	Depth	Start time	Finish time	Drill time	Torque	Weight	rjorn	Pen/r	Breakout / Ground conditions
TE-013	1.07	104.28	09:00	11:20	2.20	50-140	200-250	2-3	45	Blocky / Good
RUC-1219	1.52	105.80	11:30	14:50	3.20	50-130	200-250	2-3	45	Blocky / Good
RUC-1315	1.52	N/C	15:00	17:30	7.50	40-130	200-250	2.3	-	non complete
										Blocky / Good
										0
	-					1	0			
						SIGN:				-,1
			SHIFT:	light	-		OPERATO	R:		
ROD No	ROD Length	Depth	Start time	Finish time	Drill time	Torque	Weight	rpm	Pen/r	Breakout / Ground conditions
RUC-1315	1.52	107.82	0830	1030	2.00	So-100	50-70	0.5 -1	NC	Blocky Ground
RUC-1104	1.50	108.82	1040	0230	3.50	50 - 130	- SZ - OE	0.5 - 3	39	Blocky at the start Good
RUG-018	1.51	NC	0240	0300	.20	60-110	70-100	0-5-1	NC	Blocky Ground
										Non - Komplete
									1	

MONITORING – DRILLERS PLOD

Penetration rate is not necessarily related to the ground conditions at the face

 \bigcirc

5

Drillers Comment	Ground Rankir
Good Ground / competent ground	1
Good / blocky ground Blocky patches / good	1.5
Blocky ground	2
Blocky broken ground Very blocky ground	3
Blocky broken ground rock stuck on reamer Broken soft	3.5
Lost face Broken Ground 3 & 4 stalls	4
Very broken blocky ground multiple stalls Spud in / face kept falling away, very blocky big slabs	5

MONITOR – DRILLERS PLODS AND M&S FACE STABILITY SPAN

MONITORING - SEISMIC RECORDS – FILTER THE AREA – NUMBER OF TRIGGERS

MONITORING - SEISMIC RECORDS – FILTER THE AREA – NUMBER OF TRIGGERS

VERIFY

Safe access

High resolution spatial data can be delivered with support analysis and interpretation High value critical capital infrastructure that our mines are dependent upon

VERIFY

- Safe Access to the top of the raise on surface or underground
- Video and Lidar
- Rock mass damage
 - Location \bullet
 - Extent \bullet
 - Mechanism
 - Degradation with time \bullet

VERIFY THE OVERBREAK ALONG THE RAISEBORE AGAINST FORECAST PERFORMANCE – CASE 1

- Raisebore overbreak case review
- Overbreak analysed every 0.25m
- Entire raise approximately 180m³ of overbreak
 - Total overbreak in this raise is ightarrowapproximately 7%
- 95% of that material from the lower 45m of the raise
 - Overbreak in the lower 45m is around ullet23%

VERIFY THE OVERBREAK ALONG THE RAISEBORE AGAINST FORECAST PERFORMANCE – CASE 1

Planned as 4.5m raise

VERIFY THE OVERBREAK ALONG THE RAISEBORE AGAINST FORECAST PERFORMANCE – CASE 2

- 60m³ calculated from the LiDAR scan
 - Overbreak in this raise was less than 3% ightarrow
- Primarily attributed to stress spalling the length of the raise
- Overbreak results correlated well with areas of lower maximum stable span values
 - A key observation is that whilst the raise is • stable it doesn't mean no overbreak

— volumeOE

INTERPRET

Structural controls Stress orientation Rock mass yield criterion

Design

Verify

Monitor

INTERPRET – STRUCTURAL CONTROL

- Best seen by spinning around the point clouds
- Failure mechanisms can be a combination of factors

INTERPRET – STRUCTURAL CONTROL

INTERPRET - STRUCTURAL CONTROL

INTERPRET – STRUCTURE CONTROL

- Moderate increase of overbreak around structure
- Raise was wet
 - But not associated with ulletoverbreak in the raise.

Overbreak up to 0.8m

Structure

INTERPRET – YIELDING MECHANISM STRESS SPALLING AND DOG EARING – STRESS ORIENTATION

INTERPRET - STRESS SPALLING

INTERPRET - STRESS ORIENTATION - ROTATION

CONCLUSION

- Raisebore are high capital expense and LOM infrastructure that should be assessed, the loss of these infrastructure has critical impact on mine production
- The **Design** process for Raisebores can and should be done better
 - Diamond investigation hole
 - Intact rock properties to obtain Hoek-Brown criteria
 - Rock mass logging
 - Structure from ATV
 - 3D Non-linear finite element modelling in conjunction with discrete structural analysis using relevant voids.
- Note M&S stable is not no overbreak or no face issues, its not collapsed

CONCLUSION

- Raisebore are high capital expense and LOM infrastructure that should be assessed
- The <u>Design</u> process for Raisebores can and should be done using non-linear finite element modelling in conjunction with discrete structural analysis. M&S stable - is not no overbreak or no face issues
- Use all available data sources to Monitor reaming
- <u>Verify</u> the performance of the raise by undertaking a video and lidar scan. Compare performance to the forecast - not just empirical but from numerical models.
- Interpret the rock mass strength and damage, structural controls, understand the in-situ stress and requirements for ground support

DESIGN, MONITOR, VERIFY, INTERPRET

ACKNOWLEDGEMENTS

Thank you to our clients that have supported The MGT Way by engaging us to work on your projects and provide these outcomes.

Meet the Team

Dr John Player, Director and Principal Engineer

Emma Jones, Principal Study Manager – Geotechnical

MineLidar

MINELIDAR

WANT TO EXPLORE MORE?

Get in touch with our team at MineGeoTech to find out how we can help you maximise value through innovation

MINEGEOTECH

 \wedge

- www.minegeotech.com.au
- <u>contact@minegeotech.com.au</u>
 - +61 8 9381 3215